Molecular imaging of arterial and venous thrombosis.
Xiaowei WangMelanie ZieglerJames D McFadyenKarlheinz PeterPublished in: British journal of pharmacology (2021)
Thrombosis contributes to one in four deaths worldwide and is the cause of a large proportion of mortality and morbidity. A reliable and rapid diagnosis of thrombosis will allow for immediate therapy, thereby providing significant benefits to patients. Molecular imaging is a fast-growing and captivating area of research, in both preclinical and clinical applications. Major advances have been achieved by improvements in three central areas of molecular imaging: - (1) better markers for diseases, with increased sensitivity and selectivity, (2) optimised contrast agents with improved signal to noise ratio and (3), progress in scanner technologies with higher sensitivity and resolution. Clinically available imaging modalities used for molecular imaging include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, as well as nuclear imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). In the preclinical imaging field, optical (fluorescence and bioluminescent) molecular imaging has provided new mechanistic insights in the pathology of thromboembolic diseases. Overall, the advances in molecular imaging, driven by the collaboration of various scientific disciplines, have substantially contributed to an improved understanding of thrombotic disease and raise the exciting prospect of earlier diagnosis and individualised therapy for cardiovascular diseases. As such, these advances hold significant promise to be translated to clinical practice and ultimately to reduce mortality and morbidity in patients with thromboembolic diseases. LINKED ARTICLES: This article is part of a themed issue on Molecular imaging - visual themed issue. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.21/issuetoc.
Keyphrases
- computed tomography
- positron emission tomography
- magnetic resonance imaging
- contrast enhanced
- high resolution
- dual energy
- image quality
- pet ct
- cardiovascular disease
- clinical practice
- end stage renal disease
- pulmonary embolism
- cell therapy
- ejection fraction
- cardiovascular events
- pet imaging
- chronic kidney disease
- newly diagnosed
- magnetic resonance
- type diabetes
- atrial fibrillation
- peritoneal dialysis
- mass spectrometry
- diffusion weighted imaging
- photodynamic therapy
- patient reported outcomes
- high speed
- prognostic factors