Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.
Pu WangXiao XiaoJeremy R Glissen BrownTyler M BerzinMengtian TuFei XiongXiao HuPeixi LiuYan SongDi ZhangXue YangLiangping LiJiong HeXin YiJingjia LiuXiaogang LiuPublished in: Nature biomedical engineering (2018)
The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-learning algorithm can detect polyps in clinical colonoscopies, in real time and with high sensitivity and specificity. We developed the deep-learning algorithm by using data from 1,290 patients, and validated it on newly collected 27,113 colonoscopy images from 1,138 patients with at least one detected polyp (per-image-sensitivity, 94.38%; per-image-specificity, 95.92%; area under the receiver operating characteristic curve, 0.984), on a public database of 612 polyp-containing images (per-image-sensitivity, 88.24%), on 138 colonoscopy videos with histologically confirmed polyps (per-image-sensitivity of 91.64%; per-polyp-sensitivity, 100%), and on 54 unaltered full-range colonoscopy videos without polyps (per-image-specificity, 95.40%). By using a multi-threaded processing system, the algorithm can process at least 25 frames per second with a latency of 76.80 ± 5.60 ms in real-time video analysis. The software may aid endoscopists while performing colonoscopies, and help assess differences in polyp and adenoma detection performance among endoscopists.
Keyphrases
- deep learning
- machine learning
- chronic rhinosinusitis
- artificial intelligence
- convolutional neural network
- loop mediated isothermal amplification
- label free
- real time pcr
- colorectal cancer screening
- big data
- end stage renal disease
- healthcare
- mass spectrometry
- electronic health record
- patient reported outcomes
- optical coherence tomography
- silver nanoparticles
- patient reported