Login / Signup

Curious Case of Cobaltocenium Carbaldehyde.

Daniel MeniaMichael PittracherHolger KopackaKlaus WurstFlorian R NeururerDaniel LeitnerStephan HohlochMaren PodewitzBenno Bildstein
Published in: Organometallics (2023)
Cobaltocenium carbaldehyde (formylcobaltocenium) hexafluoridophosphate, a long sought-after functionalized cobaltocenium salt, is accessible from cobaltocenium carboxylic acid by a three-step synthetic sequence involving (i) chlorination to the acid chloride, (ii) copper-borohydride reduction to the hydroxymethyl derivative, and (iii) Dess-Martin oxidation to the title compound. Due to the strongly electron-withdrawing cationic cobaltocenium moiety, no standard aldehyde reactivity is observed. Instead, nucleophilic addition followed by haloform-type cleavage prevails, thereby ruling out common useful aldehyde derivatization. One-electron reduction of cobaltocenium carbaldehyde hexafluoridophosphate affords the deep-blue, isolable cobaltocene carbaldehyde 19-valence-electron radical whose spin density is located fully at cobalt and not at the formyl carbon atom. 1 H/ 13 C NMR, IR, EPR spectroscopy, high-resolution mass spectrometry, cyclic voltammetry, single crystal structure analysis (XRD), and density functional theory are applied to characterize these unusual formyl-cobaltocenium/cobaltocene compounds.
Keyphrases