Login / Signup

Plasma Proteomic Signature Predicts Myeloid Neoplasm Risk.

Duc TranJ Scott BeelerJie LiuBrian WileyIrenaeus C C ChanZilan XinMichael H KramerArmel L Batchi-BouyouXiaoyu ZongMatthew J WalterGiulia E M PetroneSarantis ChlamydasFrancesca FerraroStephen T OhDaniel C LinkBen BusbyYin CaoKelly L Bolton
Published in: Clinical cancer research : an official journal of the American Association for Cancer Research (2024)
These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095.
Keyphrases
  • room temperature
  • big data
  • electronic health record
  • dendritic cells
  • bone marrow
  • acute myeloid leukemia
  • low grade
  • ionic liquid
  • machine learning
  • immune response
  • label free
  • metal organic framework