Quantum Thermal Amplifiers with Engineered Dissipation.
Antonio MandarinoPublished in: Entropy (Basel, Switzerland) (2022)
A three-terminal device, able to control the heat currents flowing through it, is known as a quantum thermal transistor whenever it amplifies two output currents as a response to the external source acting on its third terminal. Several efforts have been proposed in the direction of addressing different engineering options of the configuration of the system. Here, we adhere to the scheme in which such a device is implemented as a three-qubit system that interacts with three separate thermal baths. However, another interesting direction is how to engineer the thermal reservoirs to magnify the current amplification. Here, we derive a quantum dynamical equation for the evolution of the system to study the role of distinct dissipative thermal noises. We compare the amplification gain in different configurations and analyze the role of the correlations in a system exhibiting the thermal transistor effect, via measures borrowed from the quantum information theory.