Login / Signup

Thermosensitive Polyhedral Oligomeric Silsesquioxane Hybrid Hydrogel Enhances the Antibacterial Efficiency of Erythromycin in Bacterial Keratitis.

Lan ZhengYing ChenYi HanJingwei LinKai FanMengyuan WangTing TengXiuqin YangLingjie KeMuyuan LiShujia GuoZibiao LiYunlong WuCheng Li
Published in: Biomaterials research (2024)
Bacterial keratitis is a serious ocular infection that can impair vision or even cause blindness. The clinical use of antibiotics is limited due to their low bioavailability and drug resistance. Hence, there is a need to develop a novel drug delivery system for this infectious disease. In this study, erythromycin (EM) was encapsulated into a bifunctional polyhedral oligomeric silsesquioxane (BPOSS) with the backbone of the poly-PEG/PPG urethane (BPEP) hydrogel with the aim of improving the drug efficiency in treating bacterial keratitis. A comprehensive characterization of the BPEP hydrogel was performed, and its biocompatibility was assessed. Furthermore, we carried out the evaluation of the antimicrobial effect of the BPEP-EM hydrogel in S. aureus keratitis using in vivo mouse model. The BPEP hydrogel exhibited self-assembling and thermogelling properties, which assisted the drug loading of drug EM and improved its water solubility. Furthermore, the BPEP hydrogel could effectively bind with mucin on the ocular surface, thereby markedly prolonging the ocular residence time of EM. In vivo testing confirmed that the BPEP-EM hydrogel exerted a potent therapeutic action in the mouse model of bacterial keratitis. In addition, the hydrogel also exhibited an excellent biocompatibility. Our findings demonstrate that the BPEP-EM hydrogel showed a superior therapeutic effect in bacterial keratitis and demonstrated its potential as an ophthalmic formulation.
Keyphrases
  • drug delivery
  • tissue engineering
  • hyaluronic acid
  • wound healing
  • mouse model
  • emergency department
  • anti inflammatory
  • drug induced