Login / Signup

Dimensional Optimization for ZnO-Based Mechano-ATRP with Extraordinary Activity.

Kaixin LiuWenjie ZhangLingxin ZongYanjie HeXiaomeng ZhangMinying LiuGe ShiXiaoguang QiaoXinchang Pang
Published in: The journal of physical chemistry letters (2022)
Various piezoelectric nanomaterials were utilized in ultrasound-mediated atom transfer radical polymerization (ATRP), owing to their outstanding piezoelectric effect. However, the relationship between the morphology of those piezocatalysts and polymerization has not been clearly established. Herein, we employed different piezoelectric zinc oxide (ZnO) nanomaterials to achieve novel mechano-induced ATRP (mechano-ATRP). Based on the synergistic effect of piezoelectric properties and specific surface area, the catalytic activity of 1D ZnO nanorods (1D-ZnO NRs) with increased aspect ratio outperformed that of 0D ZnO nanoparticles (0D-ZnO NPs). Compared to the conventional ATRP system, this system exhibited extraordinary activity toward the less activated monomer acrylonitrile (67% conversion after 6 h), with a narrow molecular weight distribution (polydispersity index ∼ 1.19). Furthermore, implications of ZnO loading, copper salt amount, degree of polymerization, monomer, and solvent were also studied for the highly efficient mechano-ATRP.
Keyphrases