Login / Signup

Lewis Acid-Promoted Oxidative Addition at a [Ni0 (diphosphine)2 ] Complex: The Critical Role of a Secondary Coordination Sphere.

Joseph A ZurakowskiBrady J H AustenMaeve C DufourDenis M SpasyukDavid J NelsonMarcus W Drover
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Oxidative addition represents a critical elementary step in myriad catalytic transformations. Here, the importance of thoughtful ligand design cannot be overstated. In this work, we report the intermolecular activation of iodobenzene (PhI) at a coordinatively saturated 18-electron [Ni0 (diphosphine)2 ] complex bearing a Lewis acidic secondary coordination sphere. Whereas alkyl-substituted diphosphine complexes of Group 10 are known to be unreactive in such reactions, we show that [Ni0 (P2 BCy 4 )2 ] (P2 BCy 4 =1,2-bis(di(3-dicyclohexylboraneyl)-propylphosphino)ethane) is competent for room-temperature PhI cleavage to give [NiII (P2 BCy 4 )(Ph)(I)]. This difference in oxidative addition reactivity has been scrutinized computationally - an outcome that is borne out in ring-opening to provide the reactive precursor - for [Ni0 (P2 BCy 4 )2 ], a "boron-trapped" 16-electron κ1 -diphosphine Ni(0) complex. Moreover, formation of [NiII (P2 BCy 4 )(Ph)(I)] is inherent to the P2 BCy 4 secondary coordination sphere: treatment of the Lewis adduct, [Ni0 (P2 BCy 4 )2 (DMAP)8 ] with PhI provides [NiII (P2 BCy 4 )2 (DMAP)8 (I)]I via iodine-atom abstraction and not a [NiII (Ph)(I)(diphosphine)] compound - an unusual secondary sphere effect. Finally, the reactivity of [Ni0 (P2 BCy 4 )2 ] with 4-iodopyridine was surveyed, which resulted in a pyridyl-borane linked oligomer. The implications of these outcomes are discussed in the context of designing strongly donating, and yet labile diphosphine ligands for use in a critical bond activation step relevant to catalysis.
Keyphrases