Login / Signup

Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model.

Andressa BorréLaio Oriel SemanEduardo CamponogaraStéfano Frizzo StefenonViviana Cocco MarianiLeandro Dos Santos Coelho
Published in: Sensors (Basel, Switzerland) (2023)
The predictive maintenance of electrical machines is a critical issue for companies, as it can greatly reduce maintenance costs, increase efficiency, and minimize downtime. In this paper, the issue of predicting electrical machine failures by predicting possible anomalies in the data is addressed through time series analysis. The time series data are from a sensor attached to an electrical machine (motor) measuring vibration variations in three axes: X (axial), Y (radial), and Z (radial X). The dataset is used to train a hybrid convolutional neural network with long short-term memory (CNN-LSTM) architecture. By employing quantile regression at the network output, the proposed approach aims to manage the uncertainties present in the data. The application of the hybrid CNN-LSTM attention-based model, combined with the use of quantile regression to capture uncertainties, yielded superior results compared to traditional reference models. These results can benefit companies by optimizing their maintenance schedules and improving the overall performance of their electric machines.
Keyphrases
  • convolutional neural network
  • deep learning
  • neural network
  • working memory
  • electronic health record
  • big data
  • artificial intelligence
  • machine learning
  • high frequency
  • label free