Login / Signup

Achieving Band Gap Reduction and Carrier Lifetime Enhancement in Metal Halide Perovskites via Mechanical Stretching.

Qi ZhangLiying PeiJinpeng LiKai WangQi ZengHaomiao Yu
Published in: The journal of physical chemistry letters (2021)
Strain engineering has become an efficient way to tune the optical and electronic behaviors of metal halide perovskites as a result of their unique structure-dependent optoelectronic characteristics. In this work, we show that the band gap can be reduced and, meanwhile, the carrier lifetime is increased by simply stretching the MAPbI3-xClx perovskite thin films. The narrowed band gap and prolonged carrier lifetime are beneficial for the photovoltaic actions, indicating that mechanical stretching can be a simple and efficient way to achieve photovoltaic property optimization of stretchable perovskite-based devices. Furthermore, Raman spectra show that the Pb-I bond length is shortened with mechanical stretching, which increases the valence band maximum (VBM) through orbital coupling, leading to a narrower band gap. Consequently, the trap states near VBM can be radiative as the trap energy levels become closer to the VBM, resulting in a prolonged carrier lifetime. This work brings huge opportunities to control the optoelectronic properties of metal halide perovskites through mechanical stress toward optoelectronic applications.
Keyphrases
  • solar cells
  • room temperature
  • perovskite solar cells
  • heavy metals
  • risk assessment
  • density functional theory
  • raman spectroscopy
  • ionic liquid