Login / Signup

Quantum Perturbation Theory Using Tensor Cores and a Deep Neural Network.

Joshua FinkelsteinEmanuel H RubenssonSusan M MniszewskiChristian F A NegreAnders M N Niklasson
Published in: Journal of chemical theory and computation (2022)
Time-independent quantum response calculations are performed using Tensor cores. This is achieved by mapping density matrix perturbation theory onto the computational structure of a deep neural network. The main computational cost of each deep layer is dominated by tensor contractions, i.e., dense matrix-matrix multiplications, in mixed-precision arithmetics, which achieves close to peak performance. Quantum response calculations are demonstrated and analyzed using self-consistent charge density-functional tight-binding theory as well as coupled-perturbed Hartree-Fock theory. For linear response calculations, a novel parameter-free convergence criterion is presented that is well-suited for numerically noisy low-precision floating point operations and we demonstrate a peak performance of almost 200 Tflops using the Tensor cores of two Nvidia A100 GPUs.
Keyphrases
  • neural network
  • molecular dynamics
  • density functional theory
  • monte carlo
  • molecular dynamics simulations
  • blood brain barrier
  • energy transfer