Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
Wenbo TangJustin D ShinLoren M FrankShantanu P JadhavPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2017)
Hippocampal sharp-wave ripple (SWR) events occur during both behavior (awake SWRs) and slow-wave sleep (sleep SWRs). Awake and sleep SWRs both contribute to spatial learning and memory, thought to be mediated by the coordinated reactivation of behavioral experiences in hippocampal-cortical circuits seen during SWRs. Current hypotheses suggest that reactivation contributes to memory consolidation processes, but whether awake and sleep reactivation are suited to play similar or different roles remains unclear. Here we addressed that issue by examining the structure of hippocampal (area CA1) and prefrontal (PFC) activity recorded across behavior and sleep stages in male rats learning a spatial alternation task. We found a striking state difference: prefrontal modulation during awake and sleep SWRs was surprisingly distinct, with differing patterns of excitation and inhibition. CA1-PFC synchronization was stronger during awake SWRs, and spatial reactivation, measured using both pairwise and ensemble measures, was more structured for awake SWRs compared with post-task sleep SWRs. Stronger awake reactivation was observed despite the absence of coordination between network oscillations, namely hippocampal SWRs and cortical delta and spindle oscillations, which is prevalent during sleep. Finally, awake CA1-PFC reactivation was enhanced most prominently during initial learning in a novel environment, suggesting a key role in early learning. Our results demonstrate significant differences in awake and sleep reactivation in the hippocampal-prefrontal network. These findings suggest that awake SWRs support accurate memory storage and memory-guided behavior, whereas sleep SWR reactivation is better suited to support integration of memories across experiences during consolidation.SIGNIFICANCE STATEMENT Hippocampal sharp-wave ripples (SWRs) occur both in the awake state during behavior and in the sleep state after behavior. Awake and sleep SWRs are associated with memory reactivation and are important for learning, but their specific memory functions remain unclear. Here, we found profound differences in hippocampal-cortical reactivation during awake and sleep SWRs, with key implications for their roles in memory. Awake reactivation is a higher-fidelity representation of behavioral experiences, and is enhanced during early learning, without requiring coordination of network oscillations that is seen during sleep. Our findings suggest that awake reactivation is ideally suited to support initial memory formation, retrieval and planning, whereas sleep reactivation may play a broader role in integrating memories across experiences during consolidation.