Login / Signup

TLC-Based Metabolite Profiling and Bioactivity-Based Scientific Validation for Use of Water Extracts in AYUSH Formulations.

Sultan ZahiruddinAbida ParveenWashim KhanRabea ParveenSayeed Ahmad
Published in: Evidence-based complementary and alternative medicine : eCAM (2021)
We aimed to develop a chromatographic method for scientific validation of water extract of some important Indian traditional plants used in AYUSH-based formulation as immunomodulator and to evaluate their bioactive potential. Fruits of Phyllanthus emblica L. and Piper nigrum L., stem of Tinospora cordifolia (Willd.) Miers, rhizome of Curcuma longa L., leaves of Ocimum sanctum L. and Achillea millefolium L., roots of Withania somnifera L., and stem bark of Azadirachta indica A. Juss. were coarsely powdered and extracted in three different solvents (water, ethanol, and hydroethanol). The antioxidant potential was determined through 1, 1-diphenyl-2-picrylhydrazyl and ferric reducing capacity methods. Thin-layer chromatography (TLC) was carried out for the comparative metabolite profiling of the extracts using toluene, ethyl acetate, and formic acid (5 : 4 : 1, v/v/v) as a solvent system. In vitro immunomodulatory activity of the extracts has been tested on splenocyte proliferation and pinocytic assay. Hydroethanolic extract (HEE) of most of the plant materials has the highest phenolic and flavonoid contents, followed by water extract (WE) and ethanolic extract (EE), whereas the water extracts of most of the plant material showed better antioxidant activity. Almost all extract exhibited splenocyte proliferation and pinocytic activity in a dose-dependent manner. But water extract showed significantly higher splenocyte proliferation and pinocytic activity as compared to the other two extracts. TLC analysis resulted in detection of totally 63 and 56 metabolites at 254 nm and 366 nm, respectively. Through principal component analysis (PCA), it was observed that metabolite pattern of different extracts from same plant materials may be different or similar. This preliminary result can be used for quality evaluation and to develop a synergy-based polyherbal combination of water extracts of selected plant materials.
Keyphrases
  • oxidative stress
  • anti inflammatory
  • signaling pathway
  • single cell
  • mass spectrometry
  • ms ms
  • high throughput
  • risk assessment
  • sensitive detection
  • quality improvement
  • climate change