Delineating a Tailor-Made Fluorescent Probe Designed for the Selective Detection of Tyrosinase.
Kavyashree PAswini R AAbhijit KarmakarApurba Lal KonerPublished in: Chemistry, an Asian journal (2024)
A dicyanoisophorone based fluorescent probe (E)-2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile (DCIP-OH) was developed for the selective sensing of tyrosinase in apple extract and live cells. The probe was obtained by the condensation of 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile with 4-hydroxybenzaldehyde. Upon interaction with tyrosinase, the probe exhibited absorbance switching from 417 nm to 357 nm, accompanied by a slight increase in absorption value and an isosbestic point observed at 373 nm. Additionally, a reduction in emission intensity at 592 nm was observed. Furthermore, we successfully employed the probe for sensing of tyrosinase in apple extract and conducted inhibition studies by using kojic acid. LOD was determined to be ~0.4 nM. Moreover, the biocompatible nature of DCIP-OH enabled its effective localization in epithelial-like melanoma cells, B16F10, where it demonstrated successful fluorescent probing of intracellular tyrosinase.