Login / Signup

Towards a Highly Efficient ZnO Based Nanogenerator.

Mohammad Aiman MustaffaFaiz ArithNur Syamimi NoorasidMohd Shahril Izuan Mohd ZinKok Swee LeongFara Ashikin AliAhmad Nizamuddin Muhammad MustafaMohd Muzafar Ismail
Published in: Micromachines (2022)
A nanogenerator (NG) is an energy harvester device that converts mechanical energy into electrical energy on a small scale by relying on physical changes. Piezoelectric semiconductor materials play a key role in producing high output power in piezoelectric nanogenerator. Low cost, reliability, deformation, and electrical and thermal properties are the main criteria for an excellent device. Typically, there are several main types of piezoelectric materials, zinc oxide (ZnO) nanorods, barium titanate (BaTiO 3 ) and lead zirconate titanate (PZT). Among those candidate, ZnO nanorods have shown high performance features due to their unique characteristics, such as having a wide-bandgap semiconductor energy of 3.3 eV and the ability to produce more ordered and uniform structures. In addition, ZnO nanorods have generated considerable output power, mainly due to their elastic nanostructure, mechanical stability and appropriate bandgap. Apart from that, doping the ZnO nanorods and adding doping impurities into the bulk ZnO nanorods are shown to have an influence on device performance. Based on findings, Ni-doped ZnO nanorods are found to have higher output power and surface area compared to other doped. This paper discusses several techniques for the synthesis growth of ZnO nanorods. Findings show that the hydrothermal method is the most commonly used technique due to its low cost and straightforward process. This paper reveals that the growth of ZnO nanorods using the hydrothermal method has achieved a high power density of 9 µWcm -2 .
Keyphrases
  • reduced graphene oxide
  • room temperature
  • quantum dots
  • gold nanoparticles
  • low cost
  • visible light
  • highly efficient
  • light emitting
  • physical activity
  • anaerobic digestion
  • municipal solid waste