Login / Signup

Grinding Synthesis of APbX3 (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals.

Daqin ChenJunni LiXiao ChenJiangkun ChenJiasong Zhong
Published in: ACS applied materials & interfaces (2019)
Currently, metal halide perovskite nanocrystals have been extensively explored due to their unique optoelectronic properties and wide application prospects. In the present work, a facile grinding method is developed to prepare whole-family APbX3 (A = MA, FA, and Cs; X = Cl, Br, and I) perovskite nanocrystals. This strategy alleviates the harsh synthesis conditions of precursor dissolution, atmosphere protection, and high temperature. Impressively, the as-prepared perovskite nanocrystals are evidenced to have halogen-rich surfaces and yield visible full-spectral emissions with maximal photoluminescence quantum yield up to 92% and excellent stability. Additionally, the grinding method can be extended to synthesize widely concerned Mn2+-doped CsPbCl3 nanocrystals with dual-modal emissions of both excitons and dopants. As a proof-of-concept experiment, the present perovskite nanocrystals are demonstrated to be applicable as blue/green/red color converters in UV-excitable white-light-emitting diodes.
Keyphrases