cPKCγ-Modulated Sequential Reactivation of mTOR Inhibited Autophagic Flux in Neurons Exposed to Oxygen Glucose Deprivation/Reperfusion.
Rongrong HuaSong HanNan ZhangQingqing DaiTing LiuJun-Fa LiPublished in: International journal of molecular sciences (2018)
We have reported that conventional protein kinase Cγ (cPKCγ)-modulated neuron-specific autophagy improved the neurological outcome of mice following ischemic stroke through the Akt-mechanistic target of rapamycin (mTOR) pathway. However, its detailed molecular mechanism remains unclear. In this study, primary cortical neurons from postnatal one-day-old C57BL/6J cPKCγ wild-type (cPKCγ+/+) and knockout (cPKCγ−/−) mice suffering oxygen glucose deprivation/reperfusion (OGD/R) were used to simulate ischemia/reperfusion injury in vitro. A block of autophagic flux was observed in cPKCγ+/+ neurons under OGD/R exposure, characterized by accumulation of p62. Immunofluorescent results showed a decrease in colocalization between LC3 and Atg14 or Stx17 in cPKCγ+/+ neurons when compared with cPKCγ−/− neurons after OGD/R. However, the colocalization between LC3 and Lamp2 was barely decreased, indicating the presence of autolysosomes. The larger lysotracker-positive structures were also significantly increased. These results suggest that cPKCγ-induced inhibition of autophagy occurred at the stages of autophagosome formation, Stx17 anchoring, and the degradation of autolysosomes in particular. In addition, cPKCγ-modulated phosphorylation of mTOR at Ser 2481 was dependent on the site of Ser 2448, which may have blocked autophagic flux. cPKCγ-modulated sequential reactivation of mTOR inhibited autophagic flux in neurons exposed to OGD/R, which may provide endogenous interventional strategies for stroke, especially ischemia/reperfusion injury.
Keyphrases
- cell death
- ischemia reperfusion injury
- spinal cord
- cell proliferation
- wild type
- atrial fibrillation
- protein kinase
- heart failure
- signaling pathway
- spinal cord injury
- acute myocardial infarction
- mass spectrometry
- preterm infants
- cerebral ischemia
- insulin resistance
- blood brain barrier
- high resolution
- left ventricular
- simultaneous determination