Login / Signup

Phenolic water toxins: redox mechanism and method of their detection in water and wastewater.

Tayyaba KokabAfzal ShahJan NisarMuhammad Naeem AshiqM Abdullah KhanSher Bahadar KhanEsraa M Bakhsh
Published in: RSC advances (2021)
Phenolic pollutants are highly toxic and persistent in the environment. Their efficient detection is a pressing social demand. In this regard we introduce a novel ultrasensitive electroanalytical platform for the individual and synchronized detection of three phenolic isomers commonly known as hydroquinone (HQ), resorcinol (RC), and catechol (CC). The sensing device consists of a glassy carbon electrode (GCE) modified with functionalized carbon nanotubes (fCNTs) and gold-silver (Au-Ag NPs) bimetallic nanoparticles. The sandwiched scaffold represented as fCNTs/Au-Ag NPs/fCNTs/GCE efficiently senses HQ, RC, and CC with detection limits of 28.6 fM, 36.5 fM and 42.8 fM respectively. The designed sensor is more promising than reported sensors for phenolic toxins in the context of high sensitivity, selectivity, and rapid responsiveness. The designed sensor also shows the qualities of stability, reproducibility, reliability, and selective recognition capacity for target analytes in multiple real water samples. Moreover, computational calculations explain the function of the electrode modifier in facilitating charge transfer between the transducer and analytes.
Keyphrases