Login / Signup

Structural and Functional Analyses of a Spiro-Carbon-Forming, Highly Promiscuous Epoxidase from Fungal Natural Product Biosynthesis.

Takuma MatsushitaShinji KishimotoKodai HaraHiroshi HashimotoKenji Watanabe
Published in: Biochemistry (2020)
Biosynthesis of fungal nonribosomal peptides frequently involves redox enzymes such as flavin-containing monooxygenase (FMO) to introduce complexity into the core chemical structure. One such example is the formation of spiro-carbons catalyzed by various oxidases. Because many chemically complex spiro-carbon-bearing natural products exhibit useful biological activities, understanding the mechanism of spiro-carbon biosynthesis is of great interest. We previously identified FqzB, an FMO from the fumiquinazoline biosynthetic pathway responsible for epoxidation of fumiquinazoline F that crosstalks with the fumitremorgin biosynthetic pathway to form spirotryprostatin A via epoxidation of the precursor fumitremorgin C. What makes FqzB more interesting is its relaxed substrate specificity, where it can accept a range of other substrates, including tryprostatins A and B along with its original substrate fumiquinazoline F. Here, we characterized FqzB crystallographically and examined FqzB and its site-specific mutants kinetically to understand how this promiscuous epoxidase works. Furthermore, the mutagenesis studies as well as computational docking experiments between the FqzB crystal structure and its known substrates spirotryprostatin A and B, as well as fumitremorgin C and fumiquinazoline F, provided insight into potential modes of substrate recognition and the source of broad substrate tolerance exhibited by this epoxidase. This study serves as a foundation for further characterization and engineering of this redox enzyme, which has potential utility as a valuable catalyst with broad substrate tolerance and an ability to introduce chemical complexity into carbon frameworks for chemoenzymatic and biosynthetic applications.
Keyphrases
  • crystal structure
  • cell wall
  • structural basis
  • amino acid
  • room temperature
  • molecular dynamics
  • molecular dynamics simulations
  • human health
  • risk assessment
  • climate change
  • small molecule