Login / Signup

A novel TPS toolkit to assess correlation between transit fluence dosimetry and DVH metrics for adaptive head and neck radiotherapy.

George AntoniouScott N Penfold
Published in: Physical and engineering sciences in medicine (2021)
Inter-fractional anatomical variations in head and neck (H&N) cancer patients can lead to clinically significant dosimetric changes. Adaptive re-planning should thus commence to negate any potential over-dosage to organs-at-risk (OAR), as well as potential under-dosage to target lesions. The aim of this study is to explore the correlation between transit fluence, as measured at an electronic portal imaging device (EPID), and dose volume histogram (DVH) metrics to target and OAR structures in a simulated environment. Planning data of eight patients that have previously undergone adaptive radiotherapy for H&N cancer using volumetric modulated arc therapy (VMAT) at the Royal Adelaide Hospital were selected for this study. Through delivering the original treatment plan to both the planning and rescan CTs of these eight patients, predicted electronic portal images (EPIs) and DVH metrics corresponding to each data set were extracted using a novel RayStation script. A weighted projection mask was developed for target and OAR structures through considering the intra-angle overlap between fluence and structure contours projected onto the EPIs. The correlation between change in transit fluence and planning target volume (PTV) D98 and spinal cord D0.03cc with and without the weighting mask applied was investigated. PTV D98 was strongly correlated with mean fluence percentage difference both with and without the weighting mask applied (RMask = 0.69, RNo Mask = 0.79, N = 14, p < 0.05), where spinal cord D0.03cc exhibited a weak correlation (RMask = 0.35, RNo Mask = 0.53, N = 7, p > 0.05) however this result was not statistically significant. The simulation toolkit developed in this work provided a useful means to investigate the relationship between change in transit fluence and change in key dosimetric parameters for H&N cancer patients.
Keyphrases