A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries.
Hongcai GaoLeigang XueSen XinKyusung ParkJohn B GoodenoughPublished in: Angewandte Chemie (International ed. in English) (2017)
The development of all-solid-state rechargeable batteries is plagued by a large interfacial resistance between a solid cathode and a solid electrolyte that increases with each charge-discharge cycle. The introduction of a plastic-crystal electrolyte interphase between a solid electrolyte and solid cathode particles reduces the interfacial resistance, increases the cycle life, and allows a high rate performance. Comparison of solid-state sodium cells with 1) solid electrolyte Na3 Zr2 (Si2 PO4 ) particles versus 2) plastic-crystal electrolyte in the cathode composites shows that the former suffers from a huge irreversible capacity loss on cycling whereas the latter exhibits a dramatically improved electrochemical performance with retention of capacity for over 100 cycles and cycling at 5 C rate. The application of a plastic-crystal electrolyte interphase between a solid electrolyte and a solid cathode may be extended to other all-solid-state battery cells.