Login / Signup

Conformational Effects of [Ni2 (μ-ArS)2 ] Cores on Their Electrocatalytic Activity.

Alexander Mondragón-DíazElvis Robles-MarínBrenda A Murueta-CruzJuan C AquitePaulina R Martínez-AlanisMarcos Flores-AlamoGabriel AullónLuis Norberto BenítezIvan Castillo
Published in: Chemistry, an Asian journal (2019)
Two nickel complexes supported by tridentate NS2 ligands, [Ni2 (κ-N,S,S,S'-NPh {CH2 (MeC6 H2 R')S}2 )2 ] (1; R'=3,5-(CF3 )2 C6 H3 ) and [Ni2 (κ-N,S,S,S'-NiBu {CH2 C6 H4 S}2 )2 ] (2), were prepared as bioinspired models of the active site of [NiFe] hydrogenases. The solid-state structure of 1 reveals that the [Ni2 (μ-ArS)2 ] core is bent, with the planes of the nickel centers at a hinge angle of 81.3(5)°, whereas 2 shows a coplanar arrangement between both nickel(II) ions in the dimeric structure. Complex 1 electrocatalyzes proton reduction from CF3 COOH at -1.93 (overpotential of 1.04 V, with icat /ip ≈21.8) and -1.47 V (overpotential of 580 mV, with icat /ip ≈5.9) versus the ferrocene/ferrocenium redox couple. The electrochemical behavior of 1 relative to that of 2 may be related to the bent [Ni2 (μ-ArS)2 ] core, which allows proximity of the two Ni⋅⋅⋅Ni centers at 2.730(8) Å; thus possibly favoring H+ reduction. In contrast, the planar [Ni2 (μ-ArS)2 ] core of 2 results in a Ni⋅⋅⋅Ni distance of 3.364(4) Å and is unstable in the presence of acid.
Keyphrases