Controllable Structural Colored Screen for Real-Time Display via Near-Infrared Light.
Chao HuangHanbing ZhangShuangye YangJie WeiPublished in: ACS applied materials & interfaces (2020)
Patterned colloidal crystals with stimuli-responsive materials provide sensitive and versatile means for investigating the varying ambiance of heat, light, electricity, magnetism, and stress. However, it remains a challenge to integrate stimuli-responsive materials with colloidal crystals by a simple and efficient method, thus restricting them from being used in general applications. Inspired from chameleons, we present a facile yet high-quality approach for the fabrication of the assembly of colloidal nanoparticles based on the hydrophilic-modified thermosensitive films. Various kinds of integral thermosensitive structural colored (TSSC) films are simply prepared in a high-quality screen on a large scale, with low cost, angle independence, and excellent flexibility. Simply turning on the near-infrared (NIR) laser brings heat to the irradiated region to increase the temperature. Integration of the multi-colored photonic bandgap (PBG) of the thermal-sensitive colloidal crystal and flexible anti-counterfeit labels into the NIR light exciting screens can change the intensity of PBG obviously. This advanced technology not only provides an efficient strategy for the preparation of colloidal crystal but also demonstrates a highly thermosensitive structural colored screen that has great prospect for information storage, anticounterfeiting, and real-time display materials.