Ultrathin water-stable metal-organic framework membranes for ion separation.
Meipeng JianRuosang QiuYun XiaJun LuYu Emily ChenQin-Fen GuRuiping LiuChengzhi HuJiuhui QuHuanting WangXiwang ZhangPublished in: Science advances (2020)
Owing to the rich porosity and uniform pore size, metal-organic frameworks (MOFs) offer substantial advantages over other materials for the precise and fast membrane separation. However, achieving ultrathin water-stable MOF membranes remains a great challenge. Here, we first report the successful exfoliation of two-dimensional (2D) monolayer aluminum tetra-(4-carboxyphenyl) porphyrin framework (termed Al-MOF) nanosheets. Ultrathin water-stable Al-MOF membranes are assembled by using the exfoliated nanosheets as building blocks. While achieving a water flux of up to 2.2 mol m-2 hour-1 bar-1, the obtained 2D Al-MOF laminar membranes exhibit rejection rates of nearly 100% on investigated inorganic ions. The simulation results confirm that intrinsic nanopores of the Al-MOF nanosheets domain the ion/water separation, and the vertically aligned aperture channels are the main transport pathways for water molecules.