Optical excitations of chlorophyll a and b monomers and dimers.
María Rosa Preciado-RivasDuncan John MowbrayKeenan LyonAsk Hjorth LarsenBruce Forbes MilnePublished in: The Journal of chemical physics (2019)
A necessary first step in the development of technologies such as artificial photosynthesis is understanding the photoexcitation process within the basic building blocks of naturally occurring light harvesting complexes (LHCs). The most important of these building blocks in biological LHCs such as LHC II from green plants are the chlorophyll a (Chl a) and chlorophyll b (Chl b) chromophores dispersed throughout the protein matrix. However, efforts to describe such systems are still hampered by the lack of computationally efficient and accurate methods that are able to describe optical absorption in large biomolecules. In this work, we employ a highly efficient linear combination of atomic orbitals (LCAOs) to represent the Kohn-Sham (KS) wave functions at the density functional theory (DFT) level and perform time-dependent density functional theory (TDDFT) calculations in either the reciprocal space and frequency domain (LCAO-TDDFT-k-ω) or real space and time domain (LCAO-TDDFT-r-t) of the optical absorption spectra of Chl a and b monomers and dimers. We find that our LCAO-TDDFT-k-ω and LCAO-TDDFT-r-t calculations reproduce results obtained with a plane-wave (PW) representation of the KS wave functions (PW-TDDFT-k-ω) but with a significant reduction in computational effort. Moreover, by applying the Gritsenko, van Leeuwen, van Lenthe, and Baerends solid and correlation derivative discontinuity correction Δx to the KS eigenenergies, with both LCAO-TDDFT-k-ω and LCAO-TDDFT-r-t methods, we are able to semiquantitatively reproduce the experimentally measured photoinduced dissociation results. This work opens the path to first principles calculations of optical excitations in macromolecular systems.