Development of Machine Learning Models to Predict Platinum Sensitivity of High-Grade Serous Ovarian Carcinoma.
Suhyun HwangboSe Ik KimJu-Hyun KimKyung Jin EohChanhee LeeYoung-Tae KimDae-Shik SuhTaesung ParkYong-Sang SongPublished in: Cancers (2021)
To support the implementation of individualized disease management, we aimed to develop machine learning models predicting platinum sensitivity in patients with high-grade serous ovarian carcinoma (HGSOC). We reviewed the medical records of 1002 eligible patients. Patients' clinicopathologic characteristics, surgical findings, details of chemotherapy, treatment response, and survival outcomes were collected. Using the stepwise selection method, based on the area under the receiver operating characteristic curve (AUC) values, six variables associated with platinum sensitivity were selected: age, initial serum CA-125 levels, neoadjuvant chemotherapy, pelvic lymph node status, involvement of pelvic tissue other than the uterus and tubes, and involvement of the small bowel and mesentery. Based on these variables, predictive models were constructed using four machine learning algorithms, logistic regression (LR), random forest, support vector machine, and deep neural network; the model performance was evaluated with the five-fold cross-validation method. The LR-based model performed best at identifying platinum-resistant cases with an AUC of 0.741. Adding the FIGO stage and residual tumor size after debulking surgery did not improve model performance. Based on the six-variable LR model, we also developed a web-based nomogram. The presented models may be useful in clinical practice and research.
Keyphrases
- high grade
- machine learning
- neoadjuvant chemotherapy
- lymph node
- end stage renal disease
- ejection fraction
- low grade
- newly diagnosed
- locally advanced
- healthcare
- neural network
- artificial intelligence
- deep learning
- primary care
- minimally invasive
- prognostic factors
- clinical practice
- sentinel lymph node
- big data
- squamous cell carcinoma
- acute coronary syndrome
- radiation therapy
- coronary artery disease
- climate change
- patient reported