The Exposure Order Strongly Modifies How a Heat Spike Increases Pesticide Toxicity.
Shandong MengVienna DelnatRobby StoksPublished in: Environmental science & technology (2020)
The exposure order may strongly affect the impact of stressors, yet is largely ignored for the frequently occurring combinations of toxicants with natural stressors. We tested how exposure order shaped the interactive effects of serial exposure to the pesticide chlorpyrifos and to a heat spike in the larvae of the mosquito Culex pipiens. Notably, the chlorpyrifos-induced mortality was much more magnified by the heat spike and a synergism was already detected at the low concentration when exposure to chlorpyrifos followed the heat spike. This suggests that the preceding heat spike weakened the larvae as reflected in their lower net energy budget, moreover the chlorpyrifos-induced inhibition of its target enzyme (acetylcholinesterase) was only magnified by the heat spike when it was the first stressor. Also the chlorpyrifos-induced reduction in heat tolerance was stronger when the pesticide pulse followed the heat spike, and was buffered by the heat spike when this was the second stressor. Our results provide the first evidence that the exposure order can strongly change the magnifying effect of an important climate change factor on the toxicity of a pesticide. This highlights the importance of exposure order in ecological risk assessment of toxicants under realistic combinations with natural stressors.