Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers.
Mariusz KownackiSimon M LangeneggerShi-Xia LiuRobert HänerPublished in: Angewandte Chemie (International ed. in English) (2018)
An approach combining DNA nanoscaffolds with supramolecular polymers for the efficient and directional propagation of light-harvesting cascades has been developed. A series of photonic wires with different arrangements of fluorophores in DNA-organized nanostructures were linked to light-harvesting supramolecular phenanthrene polymers (SPs) in a self-assembled fashion. Among them, a light-harvesting complex (LHC) composed of SPs and a photonic wire of phenanthrene, Cy3, Cy5, and Cy5.5 chromophores reveals a remarkable energy transfer efficiency of 59 %. Stepwise transfer of the excitation energy collected by the light-harvesting SPs via the intermediate Cy3 and Cy5 chromophores to the final Cy5.5 acceptor proceeds through a Förster resonance energy transfer mechanism. In addition, the light-harvesting properties are documented by antenna effects ranging from 1.4 up to 23 for different LHCs.