Recycling of Wastes Plastics and Tires from Automotive Industry.
Iveta ČabalováAleš HázJozef KrilekTatiana BubeníkováJán MelicherčíkTomáš KuvikPublished in: Polymers (2021)
Waste tires (granulate) and selected plastics from the automotive industry were evaluated by using the tertiary (pyrolysis) and quaternary (calorimetry) recovering. Pyrolysis is proving to be an environmentally friendly alternative to incineration and inefficient landfilling. Currently, the main challenges for pyrolysis of plastic waste are unavailability and inconsistent quality of feedstock, inefficient and hence costly sorting, and last but not least insufficient regulations around plastic waste management. Waste plastics and tire materials were characterized by TG/DTG analysis, Py-GC/MS analysis and calorimetry. TG analysis of the investigated materials gives the typical decomposition curves of synthetic polymers. The tested samples had the highest rate of weight loss process in the temperature range from 375 °C to 480 °C. Analytical pyrolysis of the tested polymers provided information on a wide variety of organic compounds that were released upon thermal loading of these materials without access to oxygen. Analytical pyrolysis offers valuable information on the spectrum of degradation products and their potential uses. Based on the results of calorimetry, it can be stated that the determined calorific value of selected plastic and rubber materials was ranging from 26.261 to 45.245 MJ/kg depending on the ash content and its composition.
Keyphrases
- sewage sludge
- municipal solid waste
- heavy metals
- anaerobic digestion
- weight loss
- type diabetes
- bariatric surgery
- healthcare
- skeletal muscle
- health information
- social media
- adipose tissue
- roux en y gastric bypass
- atomic force microscopy
- gastric bypass
- data analysis
- insulin resistance
- mass spectrometry
- glycemic control