Loss of trifluralin metabolic resistance in Lolium rigidum plants exposed to prosulfocarb recurrent selection.
Roberto BusiDanica E GogginAndrea OnofriPeter BoutsalisChristopher PrestonStephen B PowlesHugh J BeckiePublished in: Pest management science (2020)
This study provides evidence that trait(s) enabling efficient trifluralin metabolism in L. rigidum are purged from the population under prosulfocarb recurrent selection. The level of trifluralin metabolism in vitro and its inhibition caused by phorate action on trifluralin-metabolizing enzyme(s) is equivalent to the effect produced by prosulfocarb selection. The hypothetical link between the two phenomena is that the putative monooxygenase(s) conferring trifluralin metabolic resistance also mediate the activation of prosulfocarb to its toxic sulfoxide. Thus, we speculate that survival to prosulfocarb via a lack of metabolic herbicide activation, and survival to trifluralin conferred by enhanced herbicide metabolism, are mutually exclusive. These findings not only open up a new research direction in terms of the interaction between different herbicide resistance mechanisms in L. rigidum, but also offer strategies for immediate management of the population dynamics of metabolism-based resistance in the field. © 2020 Society of Chemical Industry.
Keyphrases