New duality results for evenly convex optimization problems.
M D FajardoSorin-Mihai GradJ VidalPublished in: Optimization (2020)
We present new results on optimization problems where the involved functions are evenly convex. By means of a generalized conjugation scheme and the perturbation theory introduced by Rockafellar, we propose an alternative dual problem for a general optimization one defined on a separated locally convex topological space. Sufficient conditions for converse and total duality involving the even convexity of the perturbation function and c-subdifferentials are given. Formulae for the c-subdifferential and biconjugate of the objective function of a general optimization problem are provided, too. We also characterize the total duality by means of the saddle-point theory for a notion of Lagrangian adapted to the considered framework.
Keyphrases