Login / Signup

Correlation of Montmorillonite Sheet Thickness and Flame Retardant Behavior of a Chitosan⁻Montmorillonite Nanosheet Membrane Assembled on Flexible Polyurethane Foam.

Peng ChenYunliang ZhaoWei WangTingting ZhangShaoxian Song
Published in: Polymers (2019)
Polymer⁻clay membranes constructed via the layer-by-layer (LbL) assembly, with a nanobrick wall structure, are known to exhibit high flame retardancy. In this work, chitosan⁻montmorillonite nanosheet (CH⁻MMTNS) membranes with different thickness of MMTNS were constructed to suppress the flammability of flexible polyurethane (FPU) foam. It was found that a thinner MMTNS membrane was more efficient in terms of reducing the flammability of the FPU foam. This was because such MMTNS membrane could deposit cheek by jowl and form a dense CH⁻MMTNS membrane on the foam surface, thus greatly limiting the translation of heat, oxygen, and volatile gases. In contrast, a thicker MMTNS constructed a fragmentary CH⁻MMTNS membrane on the coated foam surface, due to its greater gravity and weaker electrostatic attraction of chitosan; thus, the flame retardancy of a thick MMTNS membrane was lower. Moreover, the finding of different deposition behaviors of MMTNS membranes with different thickness may suggest improvements for the application of clay with the LbL assembly technology.
Keyphrases
  • drug delivery
  • wastewater treatment
  • optical coherence tomography
  • gas chromatography
  • room temperature
  • wound healing
  • mass spectrometry
  • heat stress
  • hyaluronic acid
  • contrast enhanced
  • solid phase extraction