Login / Signup

The Potential Use of Mitochondrial Extracellular Vesicles as Biomarkers or Therapeutical Tools.

Jorge Sanz-RosCristina Mas-BarguesNekane Romero-GarcíaJavier Huete-AcevedoMar DromantConsuelo Borrás
Published in: International journal of molecular sciences (2023)
The mitochondria play a crucial role in cellular metabolism, reactive oxygen species (ROS) production, and apoptosis. Aberrant mitochondria can cause severe damage to the cells, which have established a tight quality control for the mitochondria. This process avoids the accumulation of damaged mitochondria and can lead to the release of mitochondrial constituents to the extracellular milieu through mitochondrial extracellular vesicles (MitoEVs). These MitoEVs carry mtDNA, rRNA, tRNA, and protein complexes of the respiratory chain, and the largest MitoEVs can even transport whole mitochondria. Macrophages ultimately engulf these MitoEVs to undergo outsourced mitophagy. Recently, it has been reported that MitoEVs can also contain healthy mitochondria, whose function seems to be the rescue of stressed cells by restoring the loss of mitochondrial function. This mitochondrial transfer has opened the field of their use as potential disease biomarkers and therapeutic tools. This review describes this new EVs-mediated transfer of the mitochondria and the current application of MitoEVs in the clinical environment.
Keyphrases
  • reactive oxygen species
  • cell death
  • cell cycle arrest
  • oxidative stress
  • endoplasmic reticulum
  • induced apoptosis
  • quality control
  • endoplasmic reticulum stress
  • dna damage
  • nlrp inflammasome