Ion-Selective Nanosensor for Photoacoustic and Fluorescence Imaging of Potassium.
Chang Heon LeeJeff FolzWuliang ZhangJanggun JoJoel W Y TanXueding WangRaoul KopelmanPublished in: Analytical chemistry (2017)
Ion-selective optodes (ISOs), the optical analog of ion-selective electrodes, have played an increasingly important role in chemical and biochemical analysis. Here we extend this technique to ion-selective photoacoustic optodes (ISPAOs) that serve at the same time as fluorescence-based ISOs, and apply it specifically to potassium (K+). Notably, the potassium ion is one of the most abundant cations in biological systems, involved in numerous physiological and pathological processes. Furthermore, it has been recently reported that the presence of abnormal extracellular potassium concentrations in tumors suppresses the immune responses and thus suppresses immunotherapy. However, unfortunately, sensors capable of providing potassium images in vivo are still a future proposition. Here, we prepared an ion-selective potassium nanosensor (NS) aimed at in vivo photoacoustic (PA) chemical imaging of the extracellular environment, while being also capable of fluorescence based intracellular ion-selective imaging. This potassium nanosensor (K+ NS) modulates its optical properties (absorbance and fluorescence) according to the potassium concentration. The K+ NS is capable of measuring potassium, in the range of 1 mM to 100 mM, with high sensitivity and selectivity, by ISPAO based measurements. Also, a near infrared dye surface modified K+ NS allows fluorescence-based potassium sensing in the range of 20 mM to 1 M. The K+ NS serves thus as both PA and fluorescence based nanosensor, with response across the biologically relevant K+ concentrations, from the extracellular 5 mM typical values (through PA imaging) to the intracellular 150 mM typical values (through fluorescence imaging).