Covalent immobilization of β-galactosidase using a novel carrier alginate/tea waste: statistical optimization of beads modification and reusability.
Mohamed A A AbdellaMohamed E HassanPublished in: Bioprocess and biosystems engineering (2024)
β-galactosidase has been immobilized onto novel alginate/tea waste gel beads (Alg/TW) via covalent binding. Alg/TW beads were subjected to chemical modification through amination with polyethyleneimine (PEI) followed by activation with glutaraldehyde (GA). Chemical modification parameters including PEI concentration, PEI pH, and GA concentration were statistically optimized using Response Surface methodology (RSM) based on Box-Behnken Design (BBD). Analysis of variance (ANOVA) results confirmed the great significance of the model that had F value of 37.26 and P value < 0.05. Furthermore, the R 2 value (0.9882), Adjusted R 2 value (0.9617), and predicted R 2 value (0.8130) referred to the high correlation between predicted and experimental values, demonstrating the fitness of the model. In addition, the coefficient of variation (CV) value was 2.90 that pointed to the accuracy of the experiments. The highest immobilization yield (IY) of β-galactosidase (75.1%) was given under optimized conditions of PEI concentration (4%), PEI pH (9.5), and GA concentration (2.5%). Alg/TW beads were characterized by FT-IR, TGA, and SEM techniques at each step of immobilization process. Moreover, the immobilized β-galactosidase revealed a very good reusability as it could be reused for 15 and 20 consecutive cycles keeping 99.7 and 72.1% of its initial activity, respectively. In conclusion, the environmental waste (tea waste) can be used in modern technological industries such as the food and pharmaceutical industry.