Comparative study of multiclass classification methods on light microscopic images for hepatic schistosomiasis fibrosis diagnosis.
Amira S AshourAhmed Refaat HawasAmira S AshourPublished in: Health information science and systems (2018)
Hepatic schistosomiasis is a prolonged disease resulting mainly from the solvable egg antigen of schistosomiasis infection due to the host's granulomatous cell-mediated immune. Irreversible fibrosis results from the progress of the schistosomal hepatopathy. Sensitive diagnosis of this disease is based on the investigation of the microscopy images, liver tissues, and egg identification. Early diagnosis of schistosomiasis at its initial infection stage is vital to avoid egg-induced irreparable pathological reactions. Typically, there are several classification approaches that can be used for liver fibrosis staging. However, it is unclear which approaches can achieve high accuracy for analyzing and intelligently classifying the liver microscopic images. Consequently, this work aims to study the performance of the different machine learning classifiers for accurate fibrosis level staging of granuloma, namely cellular, fibrocellular and fibrotic granulomas as well as the normal samples. The classifiers include a multi-layer perceptron neural network, a decision tree, discriminant analysis, support vector machine (SVM), nearest neighbor, and the ensemble of classifiers. The statistical features of the microscopic images are extracted from the different fibrosis levels of granuloma, namely cellular, fibrocellular and fibrotic granulomas as well as the normal samples. The results established that the maximum achieved classification accuracies of value 90% were achieved using the subspace discriminant ensemble, the quadratic SVM, the linear SVM, or the linear discriminant classifiers. However, the linear discriminant classifier can be considered the superior classifier as it realized the best area under the curve of value 0.96 during the classification of the cellular granuloma as well as the fibro-cellular granuloma fibrosis levels.
Keyphrases
- deep learning
- liver fibrosis
- machine learning
- convolutional neural network
- neural network
- artificial intelligence
- optical coherence tomography
- lymph node
- systemic sclerosis
- gene expression
- pet ct
- stem cells
- single molecule
- cell therapy
- diabetic rats
- interstitial lung disease
- stress induced
- bone marrow
- mass spectrometry