Mechanical and Microstructural Properties of Thermally Sprayed Metallic Materials in Compression Tests over a Vast Range of Strain Rates.
Artur WypychTomasz JankowiakWojciech SumelkaPublished in: Materials (Basel, Switzerland) (2023)
This paper presents the mechanical behavior of thermally sprayed coatings produced using an arc wire coating material. The produced coatings were cut and subjected to strength resistance tests in static and in dynamic loading. The compressive behavior for the strain rates between 0.001 1/s and 2612 1/s was examined. The strain rate sensitivity of the material was recognized in the material during dynamic loading using the SHPB technique. Microstructural observations were made, and properties such as changes in porosity and the microhardness of the coatings tested were examined. A significant reduction in coating porosity was demonstrated after static loading (90%) and dynamic loading (86%). The result of porosity reduction is the strengthening of the coatings through an increase in the microhardness of these coatings after loading in the static test (160 HV 0.3/8) and the dynamic test (278 HV 0.3/8). As a result of the tests, the coatings retain their cohesion and remain consistent. At the same time, they can absorb a significant amount of mechanical energy due to plastic deformation and porosity reduction. The presented results concern a completely new coating material created from a core wire.
Keyphrases