Login / Signup

Hydrothermal-Induced Formation of Well-Defined Hollow Carbons with Curvature-Activated N-C Sites for Zn-Air Batteries.

Chunxiao LiWanli XuLiangwen YeJingjun LiuFeng Wang
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2021)
Metal-free carbons have been regarded as one of the promising materials alternatives to precious-metal catalysts for oxygen reduction reaction (ORR) due to their high activity and stability. In this paper, well-defined N-doped hollow carbons (NHCs) are firstly synthesized by using an ammonia-based hydrothermal synthesis that is environmentally friendly and suitable for mass production in industry and a commercial black carbon as raw material. Moreover, the shell thickness of the NHCs can be easily tuned by this hydrothermal strategy. Zn-air battery test results reveal shell thickness-dependent activity and durability for ORR over the NHCs, which exceeds that obtained by commercial Pt/C (20 wt %). The enhanced battery performance can be attributed to the curvature-activated N-C moieties on the hollow carbon surface, which served as the main active sites for ORR as evidenced by DFT calculations. The proposed approach may open a way for designing curved hollow carbons with high graphitization degree and dopant nitrogen level for metal-air batteries or fuel cells.
Keyphrases