General and Efficient Synthesis of Two-Dimensional Monolayer Mesoporous Materials with Diverse Framework Compositions.
Xuanyu YangYanyan LiJunhao MaYidong ZouXinran ZhouXiaowei ChengFahad A AlharthiAbdulaziz A AlghamdiYonghui DengPublished in: ACS applied materials & interfaces (2020)
Two-dimensional (2D) mesoporous materials have received substantial research interest due to their highly exposed active sites and unusual nanoconfinement effect. However, controllable and efficient synthesis of 2D mesoporous materials and investigation of their intrinsic properties have remained quite rare. Herein, a general and effective surface-limited cooperative assembly (SLCA) method enabled by leveling precursor solutions on KCl crystals via centrifugation is employed to conveniently synthesize two-dimensional (2D) monolayer mesoporous materials with different compositions. This novel strategy is performed in a manner similar to spin coating, not only enabling generation of ultrathin mesostructured composite film on KCl particles and recycling excessive precursor solution but also providing favorable solvent annealing environment for the film to form ordered mesostructures. Taking monolayer mesoporous Ce0.8Zr0.2O2 solid solutions as a sample, they display ultrathin nanosheet morphology with a thickness of ∼20 nm, highly open porous structure, and easily accessible active sites of surface superoxide species. Upon decoration of 2D mesoporous Ce0.8Zr0.2O2 nanosheets with Pt nanoparticles, the obtained catalyst exhibits superior catalytic activity and stability toward CO oxidation with a low onset temperature of 30 °C and a 100% conversion temperature of 95 °C, which are 35-70 °C lower than those for their counterpart materials, namely, three-dimensional (3D) mesoporous Pt/Ce0.8Zr0.2O2. Moreover, their TOFPt value is ∼11.3 times higher than that of 3D mesoporous Pt/Ce0.8Zr0.2O2. Characterizations based on various techniques indicate that such an outstanding catalytic performance is due to the ultrashort distance (20 nm) of mass diffusion, highly exposed active sites, rich surface-chemisorbed oxygen, and the synergistic effect between the Ce0.8Zr0.2O2 matrix and Pt species.