Revealing the physical nature and the strength of charge-inverted hydrogen bonds by SAPT(DFT), MP2, SCS-MP2, MP2C, and CCSD(T) methods.
Sirous YourdkhaniMirosław JabłońskiPublished in: Journal of computational chemistry (2017)
The physical nature of charge-inverted hydrogen bonds in H3 XH ⋯YH3 (X = Si, Ge; Y = Al, Ga) dimer systems is studied by means of the SAPT(DFT)-based decomposition of interaction energies and supermolecular interaction energies based on MP2, SCS-MP2, MP2C, and CCSD(T) methods utilizing dimer-centered aug-cc-pCVnZ (n = D, T, Q) basis sets as well as an extrapolation to the complete basis set limit. It is revealed that charge-inverted hydrogen bonds are inductive in nature, although dispersion is also important. Computed interaction energies form the following relation: EintSAPT<EintSCS-MP2≤EintMP2C<EintMP2≈EintCCSD(T). It is confirmed that the aug-cc-pCVDZ basis set performs poorly and that very accurate values of interaction and dispersion energies require basis sets of at least quadrupole-ζ quality. Considerably large binding energies suggest potential usefulness of charge-inverted hydrogen bonds as an important structural motif in molecular binding. Terminology applying to σ- and π-hole interactions as well as to triel and tetrel bonds is discussed. According to this new terminology the charge-inverted hydrogen bond would become the first described case of a hydride-triel bond. © 2017 Wiley Periodicals, Inc.
Keyphrases