Login / Signup

N'-(1,3-Benzo-thia-zol-2-yl)benzene-sulfono-hydrazide: crystal structure, Hirshfeld surface analysis and computational chemistry.

Thomas C BaddeleyMarcus Vinícius Nora de SouzaJames L WardellMukesh M JotaniEdward R T Tiekink
Published in: Acta crystallographica. Section E, Crystallographic communications (2019)
The asymmetric unit of the title compound, C13H11N3O2S2, comprises two independent mol-ecules (A and B); the crystal structure was determined by employing synchrotron radiation. The mol-ecules exhibit essentially the same features with an almost planar benzo-thia-zole ring (r.m.s. deviation = 0.026 and 0.009 Å for A and B, respectively), which forms an inclined dihedral angle with the phenyl ring [28.3 (3) and 29.1 (3)°, respectively]. A difference between the mol-ecules is noted in a twist about the N-S bonds [the C-S-N-N torsion angles = -56.2 (5) and -68.8 (5)°, respectively], which leads to a minor difference in orientation of the phenyl rings. In the mol-ecular packing, A and B are linked into a supra-molecular dimer via pairwise hydrazinyl-N-H⋯N(thiazol-yl) hydrogen bonds. Hydrazinyl-N-H⋯O(sulfon-yl) hydrogen bonds between A mol-ecules assemble the dimers into chains along the a-axis direction, while links between centrosymmetrically related B mol-ecules, leading to eight-membered {⋯HNSO}2 synthons, link the mol-ecules along [001]. The result is an undulating supra-molecular layer. Layers stack along the b-axis direction with benzo-thia-zole-C-H⋯O(sulfon-yl) points of contact being evident. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above inter-molecular inter-actions, but also serve to further differentiate the weaker inter-molecular inter-actions formed by the independent mol-ecules, such as π-π inter-actions. This is also highlighted in distinctive energy frameworks calculated for the individual mol-ecules.
Keyphrases
  • crystal structure
  • single molecule
  • escherichia coli
  • staphylococcus aureus
  • radiation therapy
  • cystic fibrosis
  • biofilm formation
  • radiation induced
  • drug induced
  • candida albicans