Determination of the factors responsible for the tropism of SARS-CoV-2-related bat coronaviruses to Rhinolophus bat ACE2.
Shigeru FujitaYusuke KosugiIzumi KimuraKenzo Tokunaganull nullJumpei ItoKei SatoPublished in: Journal of virology (2023)
Differences in host angiotensin converting enzyme 2 (ACE2) genes may affect the host range of SARS-CoV-2-related coronaviruses (SC2r-CoVs) and further determine the tropism of host ACE2 for the infection receptor. However, the factor(s) responsible for determining the host tropism of SC2r-CoVs, which may in part be determined by the tropism of host ACE2 usage, remains unclear. Here, we use the pseudoviruses with the spike proteins of two Laotian SC2r-CoVs, BANAL-20-236 and BANAL-20-52, and the cells expressing ACE2 proteins of eight different Rhinolophus bat species to show that these two spikes have different tropisms for Rhinolophus bat ACE2. Through structural analysis and cell culture experiments, we demonstrate that this tropism is determined by residue 493 of the spike and residues 31 and 35 of ACE2. Our results suggest that SC2r-CoVs exhibit differential ACE2 tropism, which may be driven by adaptation to different Rhinolophus bat ACE2 proteins. IMPORTANCE The efficiency of infection receptor use is the first step in determining the species tropism of viruses. After the coronavirus disease 2019 pandemic, a number of SARS-CoV-2-related coronaviruses (SC2r-CoVs) were identified in Rhinolophus bats, and some of them can use human angiotensin converting enzyme 2 (ACE2) for the infection receptor without acquiring additional mutations. This means that the potential of certain SC2r-CoVs to cause spillover from bats to humans is "off-the-shelf." However, both SC2r-CoVs and Rhinolophus bat species are highly diversified, and the host tropism of SC2r-CoVs remains unclear. Here, we focus on two Laotian SC2r-CoVs, BANAL-20-236 and BANAL-20-52, and determine how the tropism of SC2r-CoVs to Rhinolophus bat ACE2 is determined at the amino acid resolution level.
Keyphrases
- angiotensin converting enzyme
- sars cov
- angiotensin ii
- coronavirus disease
- respiratory syndrome coronavirus
- endothelial cells
- gene expression
- induced apoptosis
- high resolution
- dna methylation
- cell death
- genetic diversity
- cell proliferation
- signaling pathway
- oxidative stress
- climate change
- single molecule
- transcription factor
- simultaneous determination
- induced pluripotent stem cells