Login / Signup

Influence of nitrate and nitrite concentration on N2 O production via dissimilatory nitrate/nitrite reduction to ammonium in Bacillus paralicheniformis LMG 6934.

Yihua SunPaul De VosAnne Willems
Published in: MicrobiologyOpen (2018)
Until now, the exact mechanisms for N2 O production in dissimilatory nitrate/nitrite reduction to ammonium (DNRA) remain underexplored. Previously, we investigated this mechanism in Bacillus licheniformis and Bacillus paralicheniformis, ubiquitous gram-positive bacteria with many industrial applications, and observed significant strain dependency and media dependency in N2 O production which was thought to correlate with high residual NO2- . Here, we further studied the influence of several physicochemical factors on NO3- (or NO2- ) partitioning and N2 O production in DNRA to shed light on the possible mechanisms of N2 O production. The effects of NO3- concentrations under variable or fixed C/N-NO3- ratios, NO2- concentrations under variable or fixed C/N-NO2- ratios, and NH4+ concentrations under fixed C/N-NO3- ratios were tested during anaerobic incubation of soil bacterium B. paralicheniformis LMG 6934 (previously known as B. licheniformis), a strain with a high nitrite reduction capacity. Monitoring of growth, NO3- , NO2- , NH4+ concentration, and N2 O production in physiological tests revealed that NO3- as well as NO2- concentration showed a linear correlation with N2 O production. Increased NO3- concentration under fixed C/N-NO3- ratios, NO2- concentration, and NH4+ concentration had a significant positive effect on NO3- (or NO2- ) partitioning ([N-NH4+ ]/[N-N2 O]) toward N2 O, which may be a consequence of the (transient) accumulation and subsequent detoxification of NO2- . These findings extend the information on several physiological parameters affecting DNRA and provide a basis for further study on N2 O production during this process.
Keyphrases
  • nitric oxide
  • room temperature
  • wastewater treatment
  • single cell
  • social media
  • gram negative
  • blood brain barrier
  • high speed
  • plant growth