Antifreezing Hydroxyl Monolayer of Small Molecules on a Nanogold Surface.
Zhongxiang DingChao WangBaomei ZhouMengke SuShixuan YangYuzhu LiCheng QuHonglin LiuPublished in: Nano letters (2022)
The rational design of ice recrystallization inhibition (IRI) materials is challenging due to the poor understanding of the IRI mechanism at the molecular level. Here we report several new findings about IRI. (1) A dense hydroxyl monolayer of small molecules, e.g. 6-aza-2-thiothymine (ATT), adsorbed on a nanogold surface was demonstrated, for the first time, to have IRI activity. Five structural analogues adsorbed on groups nanogold with outward hydroxyl or methyl were created to evidence the origin of IRI activity. (2) Their IRI mechanism is closely related to the density of hydroxyls on a nanogold surface. However, the hydrophobic interaction in our model is not essential for macroscopic IRI activity. (3) A molecular dynamics simulation elucidates the hydroxyl density dependent IRI trajectories underlying the experimental observations, and the radial distribution function reveals that the methyl even slightly hinders the formation of hydrogen bonding due to a hydrophobic interaction. This work sheds more light on the IRI mechanism that should help in the customization of novel IRI materials.