Quantitative magnetic resonance imaging measures of three-dimensional aortic morphology in healthy aging and hypertension.
Thomas DietenbeckSophia Houriez-Gombaud-SaintongeEtienne CharpentierUmit GencerAlain GironAntonio GalloSamia BoussouarNicoletta PasiGilles SoulatElie MousseauxAlban RedhueilNadjia KachenouraPublished in: Journal of magnetic resonance imaging : JMRI (2021)
Automated segmentation of three-dimensional (3D) aortic magnetic resonance imaging (MRI) renders a possible retrospective selection of any location to perform quantification of aortic caliber perpendicular to its centerline and provides regional and global 3D biomarkers such as length, diameter, or volume. However, normative age-related values of such measures are still lacking. The aim of this study was to provide normal values for 3D aortic morphological measures and investigate their changes in aging and hypertension. This was a retrospective study, in which 119 healthy controls (HC: 48 ± 14 years, 61 men) and 82 hypertensive patients (HT: 60 ± 14 years, 43 men) were enrolled. 1.5 and 3 T/3D steady state free precession or spoiled gradient echo were used. Automated 3D aortic segmentation provided aortic length, diameter, volume for the ascending (AAo), and descending aorta (DAo), along with cross-sectional diameters at three aortic landmarks. Age, sex, body surface area (BSA), smoking, and blood pressures were recorded. Both groups were divided into two subgroups (≤50 years, >50 years). Statistical tests performed were linear regression for age-related normal values and confidence intervals, Wilcoxon rank sum test for differences between groups (HC or HT), and multivariate analysis to identify main determinants of aortic morphological changes. In HC, linear regression revealed an increase in the AAo (respectively DAo) length by 2.84 mm (7.78 mm), maximal diameter by 1.36 mm (1.29 mm), and volume by 4.28 ml (8.71 ml) per decade. AAo morphological measures were higher in HT patients than in HC both ≤50 years but did not reach statistical significance (length: +2 mm, p = 0.531; diameter: +1.4 mm, p = 0.2936; volume:+6.8 ml, p = 0.1857). However, length (+6 mm, p = 0.003), maximal diameter (+4 mm, p < 0.001) and volume (+12 ml, p < 0.001) were significantly higher in HT patients than in HC, both >50 years. In a multivariate analysis, age, sex, and BSA were the major determinants of aortic morphology, irrespective of the presence of hypertension. Global and segmental aortic length, volume, and diameters at specific landmarks were automatically measured from 3D MRI to serve as normative measures of 3D aortic morphology. Such indices increased significantly with age and hypertension among the elderly subjects. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 3.
Keyphrases
- aortic valve
- pulmonary artery
- aortic dissection
- magnetic resonance imaging
- blood pressure
- left ventricular
- deep learning
- ejection fraction
- pulmonary hypertension
- newly diagnosed
- hypertensive patients
- computed tomography
- magnetic resonance
- pulmonary arterial hypertension
- heart failure
- machine learning
- heart rate
- smoking cessation
- optical coherence tomography
- patient reported outcomes