Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs.
Md Ruhul AminFarhana YasminMohammed Anowar HosenSujan DeyShafi MahmudMohammad Abu SalehTalhah Bin EmranImtiaj HasanYuki FujiiMasao YamadaYasuhiro OzekiSarkar Mohammad Abe KawsarPublished in: Molecules (Basel, Switzerland) (2021)
A series of methyl β-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.
Keyphrases
- molecular docking
- molecular dynamics
- density functional theory
- molecular dynamics simulations
- sars cov
- staphylococcus aureus
- risk assessment
- single cell
- coronavirus disease
- high resolution
- induced apoptosis
- mass spectrometry
- signaling pathway
- deep learning
- cell death
- cell proliferation
- transcription factor
- anti inflammatory
- artificial intelligence
- candida albicans
- cell cycle arrest
- climate change
- monte carlo
- oxide nanoparticles