Feasibility of identifying proliferative active bone marrow with fat fraction MRI and multi-energy CT.
Michael J LawlessKory ByrnesBryan P BednarzJennifer MeudtDhanansayan ShanmuganayagamJainil ShahAlan B McMillanKe LiAli PirastehJessica MillerPublished in: Physics in medicine and biology (2024)
Active bone marrow (ABM) can serve as both an organ at risk and a target in external beam radiotherapy. 18F-fluorothymidine (FLT) PET is the current gold standard for identifying proliferative ABM but it is not approved for human use, and PET scanners are not always available to radiotherapy clinics. Identifying ABM through other, more accessible imaging modalities will allow more patients to receive treatment specific to their ABM distribution. Multi-energy CT (MECT) and fat-fraction MRI (FFMRI) show promise in their ability to characterize bone marrow adiposity, but these methods require validation for identifying proliferative ABM.
Approach: Six swine subjects were imaged using FFMRI, fast-kVp switching (FKS) MECT and sequential-scanning (SS) MECT to identify ABM volumes relative to FLT PET-derived ABM volumes. ABM was contoured on FLT PET images as the region within the bone marrow with a SUV above the mean. Bone marrow was then contoured on the FFMRI and MECT images, and thresholds were applied within these contours to determine which threshold produced the best agreement with the FLT PET determined ABM contour. Agreement between contours was measured using the Dice similarity coefficient (DSC).
Main Results: FFMRI produced the best estimate of the PET ABM contour. Compared to FLT PET ABM volumes, the FFMRI, SS MECT and FKS MECT ABM contours produced average peak DSC of 0.722+0.080, 0.619+0.070, and 0.464+0.080, respectively. The ABM volume was overestimated by 40.51%, 97.63%, and 140.13% by FFMRI, SS MECT and FKS MECT, respectively.
Significance: This study explored the ability of FFMRI and MECT to identify the proliferative relative to ABM defined by FLT PET. Of the methods investigated, FFMRI emerged as the most accurate approximation to FLT PET-derived active marrow contour, demonstrating superior performance by both DSC and volume comparison metrics. Both FFMRI and SS MECT show promise for providing patient-specific ABM treatments.
.
Keyphrases
- bone marrow
- positron emission tomography
- computed tomography
- acute myeloid leukemia
- pet ct
- tyrosine kinase
- pet imaging
- mesenchymal stem cells
- magnetic resonance imaging
- contrast enhanced
- dual energy
- image quality
- endothelial cells
- adipose tissue
- early stage
- newly diagnosed
- metabolic syndrome
- ejection fraction
- prognostic factors
- deep learning
- locally advanced
- diffusion weighted imaging
- mass spectrometry
- physical activity
- big data
- type diabetes
- body mass index
- rectal cancer
- single molecule
- artificial intelligence