Does underweight amplify the relationship between short-term particulate matter exposure and blood pressure in children and adolescents: a large cross-sectional study in a metropolis of China.
Jia HuHan FuHui ShenChen-Gang TengWei YangHai-Bing YangFang LiuPublished in: Environmental science and pollution research international (2020)
Overweight/obesity modified the effects of ambient particulate matter (PM) exposure on blood pressure (BP). This study aims to assess whether interaction of underweight and short-term PM exposure on BP exists in Chinese children. A cross-sectional analysis including 144,513 children aged 6 to 17 years in 2016 Health Promotion Program for Children and Adolescents of Suzhou, China, was performed. Daily concentrations of inhalable PM (PM10) and fine PM (PM2.5) were extracted from air monitoring stations close to students' schools. We applied generalized linear mixed-effects models to estimate the interactions. Estimated changes (95% confidence intervals (CIs)) of systolic BP (SBP), diastolic BP (DBP), and odds ratios (ORs) (95% CIs) for prevalence of HBP were calculated. Significant interactions between PM and underweight on BP and prevalence of high BP (HBP) were observed. For example, at lag 6, the ORs (95% CIs) for HBP by each 10 μg/m3 changes of PM2.5 were 1.066 (1.039, 1.093) and 1.036 (1.028, 1.043) among underweight and normal weight subjects, respectively; these values for PM10 were 1.048 (1.031, 1.065) and 1.025 (1.021, 1.030). At lag 5, the increases of SBP for PM2.5 were 0.32 (95% CI 0.22, 0.43) mmHg and 0.23 (95% CI 0.29, 0.26) mmHg, while changes of DBP were 0.27 (95% CI 0.18, 0.35) mmHg and 0.19 (95% CI 0.16, 0.21) mmHg among underweight and normal weight subjects, respectively. Stratified analyses demonstrated that these interactions were only obtained in males. Effects of short-term PM exposure on BP and prevalence of HBP are enhanced in underweight children and adolescents.
Keyphrases
- particulate matter
- air pollution
- blood pressure
- weight loss
- physical activity
- heart failure
- left ventricular
- type diabetes
- metabolic syndrome
- weight gain
- polycyclic aromatic hydrocarbons
- hypertensive patients
- insulin resistance
- young adults
- heavy metals
- skeletal muscle
- atrial fibrillation
- risk assessment
- water soluble
- ejection fraction
- body weight