Modelling the relationships between haemoglobin oxygen affinity and the oxygen cascade in humans.
John R A ShepherdPaolo B DominelliTuhin K RoyTimothy W SecombJames D HoyerJennifer L OliveiraMichael J JoynerPublished in: The Journal of physiology (2019)
The physiological implications, with regard to exercise, of altered haemoglobin affinity for oxygen are not fully understood. Data from the Mayo Clinic Laboratories database of rare human haemoglobin variants reveal a strong inverse correlation (r = -0.82) between blood haemoglobin concentration and P50 , an index of oxygen affinity [Hb = -0.3135(P50 ) + 23.636]. In the present study, observed P50 values for high, normal and low oxygen-affinity haemoglobin variants (13, 26 and 39 mmHg) and corresponding haemoglobin concentrations (19.5, 15.5 and 11.4 g dL-1 respectively) are used to model oxygen consumption as a fraction of delivery at rest ( V ̇ O 2 = 0.25 L min-1 , cardiac output = 5.70 L min-1 ) and during exercise ( V ̇ O 2 = 2.75 L min-1 , cardiac output = 18.9 l min-1 ). With high-affinity haemoglobin, the model shows that normal levels of oxygen consumption can be achieved at rest and during exercise at the assumed cardiac output levels, with reduced oxygen extraction both at rest (16.8% high affinity vs. 21.7% normal) and during exercise (55.8% high affinity vs. 72.2% normal). With low-affinity haemoglobin, which predicts low haemoglobin concentration, oxygen consumption at rest can be sustained with the assumed cardiac output, with increased oxygen extraction (31.1% low affinity vs. 21.7% normal). However, exercise at 2.75 l min-1 cannot be achieved with the assumed cardiac output, even with 100% oxygen extraction. In conclusion, the model indicates chronic alterations in P50 associate directly with Hb concentration, highlighting that human Hb variants can serve as 'experiments of nature' to address fundamental hypotheses on oxygen transport and exercise.