Login / Signup

Elucidation of Structure-Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering.

Mustafa Al SamaraiAnselm W HahnAbbas Beheshti AskariYi-Tao CuiKosuke YamazoeJun MiyawakiYoshihisa HaradaOlaf RüdigerSerena DeBeer
Published in: ACS applied materials & interfaces (2019)
Herein, we report the synthesis and electrochemical oxygen evolution experiments for a graphene-supported Ni3MnO4 catalyst. The changes that occur at the Ni active sites during the electrocatalyic oxygen evolution reaction (OER) were elucidated by a combination of operando Ni L-edge X-ray absorption spectroscopy (XAS) and Ni 2p3d resonant inelastic X-ray scattering (RIXS). These data are compared to reference measurements on NiO, β-Ni(OH)2, β-NiOOH, and γ-NiOOH. Through this comparative analysis, we are able to show that under alkaline conditions (0.1 M KOH), the oxides of the Ni3MnO4 catalyst are converted to hydroxides. At the onset of catalysis (1.47 V), the β-Ni(OH)2-like phase is oxidized and converted to a dominantly γ-NiOOH phase. The present study thus challenges the notion that the β-NiOOH phase is the active phase in OER and provides further evidence that the γ-NiOOH phase is catalytically active. The ability to use Ni L-edge XAS and 2p3d RIXS to provide a rational basis for structure-activity correlations is highlighted.
Keyphrases